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Abstract

The Navier–Stokes equations in a finite cylinder are written in terms of poloidal and toroidal potentials in order to
impose incompressibility. Regularity of the solutions is ensured in several ways: First, the potentials are represented using
a spectral basis which is analytic at the cylindrical axis. Second, the non-physical discontinuous boundary conditions at the
cylindrical corners are smoothed using a polynomial approximation to a steep exponential profile. Third, the nonlinear
term is evaluated in such a way as to eliminate singularities. The resulting pseudo-spectral code is tested using exact poly-
nomial solutions and the spectral convergence of the coefficients is demonstrated. Our solutions are shown to agree with
exact polynomial solutions and with previous calculations of axisymmetric vortex breakdown and of onset of non-axisym-
metric helical spirals. Parallelization by azimuthal wavenumber is shown to be highly effective.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The von Kármán flow owes its name to von Kármán [1] who in 1921 first studied the flow in the semi-infi-
nite domain bounded by a single rotating disk using a similarity transformation. In 1951, Batchelor [2]
extended the problem to the flow confined between two infinite rotating disks. For rotating disks of finite
radius, the configuration can be described by three control parameters: the ratio s of the angular velocity
of the two disks, the height-to-radius ratio h and a Reynolds number Re based on the radius and the azimuthal
velocity of one of the disks. The variation of these three parameters (Re, s, h) has proved to yield a rich variety
of qualitatively different accessible flows, even before the onset of turbulence. The symmetries influence the
transitions that the flow can undergo. This configuration is extensively studied in the context of transition
to complex and turbulent flows. All of these properties explain why the von Kármán flow is increasingly
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considered as one of the classical hydrodynamic configurations and why the scientific community is interested
in further exploring its complex behavior.

The first numerical studies were necessarily devoted to axisymmetric flows and their stability. In the
rotor–stator configuration (s = 0), vortex breakdown forming characteristic recirculation bubbles was
observed by Lugt and Abboud [3], Daube and Sorensen [4], Lopez [5] and Daube [6]. This now well-doc-
umented configuration has become a benchmark for testing axisymmetric codes. Following Lopez and
Shen [7], Speetjens and Clercx [8] and a number of other authors, we will validate our method in the axi-
symmetric configuration by reproducing the stationary state at Re = 1800 and the oscillating flow at
Re = 2800, for which we will compare the bifurcation threshold and the oscillation frequency against pre-
vious findings.

Increasing computational power has made it possible to study three-dimensional instabilities. Breaking of
axisymmetry has been the subject of several studies, of which we mention those of Gauthier et al. [9], Gelfgat
et al. [10], Blackburn and Lopez [11], Lopez et al. [12] and Nore et al. [13]. Three-dimensional instability pre-
cedes axisymmetric instability for h < 1.6 and h > 2.8. As the test problem for validating our code in three
dimensions, we have selected a configuration with s = �1, h = 3.5, Re = 2150, where the deviation from the
axisymmetric flow takes the form of a helical spiral. In Section 3.5 we compare our results with those of Lopez
et al. [14] and Gelfgat et al. [10].

Interesting phenomena can also be observed in the turbulent regime. Turbulence may coexist with and
large-scale structures. In experiments in a turbulent counter-rotating configuration, Marié [15] and Ravelet
et al. [16] discovered that a two-cell mean flow with a shear layer at the cylinder mid-plane undergoes switch-
ing to a one-cell mean flow whose shear layer is adjacent to the less rapidly rotating disk. This transition can be
observed at Reynolds numbers which are numerically accessible.

A comprehensive classification of the solutions for different values of the parameters (s, h, Re) is beyond
the scope of this work. Our main purpose here is to develop a mathematical and algorithmic tool which can
be applied to von Kármán flow and to rotating turbulence, and which can be extended to the magnetohy-
drodynamic configuration of the VKS experiment [17]. The major component of our algorithm is the poloi-
dal–toroidal decomposition [18,19], which insures incompressibility by construction, at the price of
increasing the order of the governing equations. When applied to the Navier–Stokes equation in a finite
cylinder, the resulting system has boundary conditions which are coupled and of high order. In a compan-
ion article [20], we showed that this system could be reduced to the solution of a set of nested Helmholtz
and Poisson problems with uncoupled Dirichlet boundary conditions, whose solutions could be superposed
via the influence matrix technique. The purpose of the present article is to describe our method for solving
these elliptic problems using a spectral representation which exploits the azimuthal symmetry of the system
and which is regular at the cylindrical axis, and to demonstrate the validity of the resulting hydrodynamic
code.

More specifically, it was shown by Marques and co-workers [18,19] that the Navier–Stokes equations
otuþ ðu � $Þu ¼ Re�1Du� $p ð1:1aÞ
$ � u ¼ 0 ð1:1bÞ
in a finite cylinder with boundary conditions
u ¼ rx�êh at z ¼ � h
2

ð1:2aÞ

u ¼ 0 at r ¼ 1; ð1:2bÞ
and with toroidal and poloidal potentials defined by
u ¼ r� ðwêzÞ þ r �r� ð/êzÞ ð1:3Þ

are equivalent to the two scalar equations
ðot � Re�1DÞDhw ¼ Sw � êz � r � ðu � $Þu ð1:4aÞ
ðot � Re�1DÞDDh/ ¼ S/ � �êz � r � r� ðu � $Þu ð1:4bÞ
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where Dh � 1
r orror þ 1

r2 o2
h, with boundary conditions
1

r
ohwþ orz/ ¼ orw ¼ Dh/ ¼ / ¼ orzDhw�

1

r
ohDDh/ ¼ 0 at r ¼ 1 ð1:5aÞ

w ¼ 0 at r ¼ 0 ð1:5bÞ

Dhwþ
1

r
or x�r2
� �

¼ ozDh/ ¼ Dh/ ¼ 0 at z ¼ � h
2

ð1:5cÞ
Our article [20] was devoted to showing how the problem (1.4) and (1.5) can in turn be reduced to a
sequence of five nested parabolic and elliptic problems, each with Dirichlet boundary conditions:
ot � Re�1D
� �

fw ¼ Sw; f wjr¼1 ¼ rf ; f wjz¼�h
2
¼ � 1

r
orðx�r2Þ ð1:6aÞ

Dhw ¼ fw; orwjr¼1 ¼ 0; wjr¼0 ¼ 0 ð1:6bÞ
ðot � Re�1DÞg ¼ S/; gjr¼1 ¼ rg; gjz¼�h

2
¼ r�g ð1:6cÞ

Df/ ¼ g; f /jr¼1 ¼ 0; f /jz¼�h
2
¼ 0 ð1:6dÞ

Dh/ ¼ f/; /jr¼1 ¼ 0 ð1:6eÞ
for the two potentials w, / and three intermediate fields g, fw and f/. The influence matrix technique [21], a
generalization of the usual separation into particular and homogeneous solutions, is used to determine bound-
ary values rf, rg, r�g such that the boundary conditions present in (1.5) but not in (1.6) are satisfied, i.e. such
that
orzfw �
1

r
ohg ¼ 0 at r ¼ 1 ð1:7aÞ

1

r
ohwþ orz/ ¼ 0 at r ¼ 1 ð1:7bÞ

ozf/ ¼ 0 at z ¼ � h
2

ð1:7cÞ
In this article, we describe the numerical implementation of this algorithm. We first present the spatial dis-
cretization of the fields, using a set of basis functions [22] which is regular at the cylindrical axis r = 0, and
regularizing the discontinuous boundary conditions at the corners r = 1, z = ±h/2. We then explain the meth-
ods we have used for solving Eq. (1.6), in particular for stably and economically solving the Helmholtz prob-
lems resulting from time discretization and for evaluating the nonlinear terms. Finally, we describe the
validation of the implementation, comparing results from our code to an analytic polynomial solution and
to previously published two- and three-dimensional test cases.

2. Spatial and temporal discretization

The spectral discretization that we use is
f ðr; h; zÞ ¼
XM

2b c

m¼� M
2b c

f mðr; zÞeimh ¼
XM

2b c

m¼� M
2b c

XK�1

k¼0

X2N�1

n¼jmj
nþm even

f m
kneimhQm

n ðrÞT k
2z
h

� �
ð2:1Þ
In (2.1), we do not introduce new notation for Fourier coefficients, or for coefficients in the 3D tensor-product
basis, using instead the number and type of superscripts and subscripts to distinguish between functions in
physical space and spectral space coefficients.

The basis functions in the azimuthal and axial directions are standard [23,24]: Fourier modes eimh and
Chebyshev polynomials T kð2z=hÞ, respectively. In cylindrical geometries, it is the radial direction which is
most problematic and on which we will focus. To represent this direction, we use the basis functions Qm

n ðrÞ
developed by Matsushima and Marcus [22]. In Sections 2.1 and 2.2, we will discuss the means by which we
impose regularity at the origin r = 0 and at the corners r = 1.
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2.1. Regular basis of radial polynomials

A function f on the disk is analytic at the origin if the radial dependence of the Fourier coefficient f m(r)
multiplying the Fourier mode eimh is of the form
-

 

Fi
f mðr; zÞ ¼
X1
n¼jmj

nþm even

am
n ðzÞrm ¼ am

mðzÞrm þ am
mþ2ðzÞrmþ2 þ � � � ¼ rmpðr2Þ ð2:2Þ
where p is a polynomial. Examples of functions which violate (2.2) are given in Figs. 1–3 and compared with
regular functions obeying (2.2) on the right of each figure.

Various approaches used in spectral methods to represent functions in polar coordinates are surveyed by
Boyd [25,26] and by Canuto et al. [24]. A common practice [8,14,21,27,28] has been to impose some degree
of continuity, such as C3, but not complete analyticity C1. Although basis functions which are not analytic
at the origin generally do not pollute the fields, retaining such functions wastes CPU time and memory which
could be better used to increase resolution.

The condition (2.2) is stated in terms of monomials, the use of which is excluded because of their poor
numerical properties. The polynomial basis developed by Matsushima and Marcus [22] respects these condi-
tions and yet is numerically well-conditioned. These polynomials Qm

n ða; b; rÞ are solutions to the singular
Sturm–Liouville equation:
ð1� r2Þ1�a

rb

d

dr
ð1� r2Þarb d

dr

� �
� jmjðjmj þ b� 1Þ

r2
þ nðnþ 2aþ b� 1Þ

 !
Qm

n ða; b; rÞ ¼ 0 ð2:3Þ
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Fig. 1. Coordinate singularity effects: parity mismatch. Left: f(r,h) = r. Right: f(r,h) = r2.
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g. 2. Coordinate singularity effects. Left: discontinuity of value. Middle: discontinuity of Laplacian. Right: regular function.
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Fig. 3. Clustering effect – contours of f m(r,h) = 0.5. Left: f m(r,h) = r2 + 32r2cos(mh), which is not smooth at 0 for m > 2. Right:
f m(r,h) = r2 + 32rmcos(mh), which is smooth at 0.
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defined over r 2 [0,1]. In (2.3), 0 6 jmj 6 n, a 2 [0,1] and b is a positive integer. With the special choice
a = b = 1, Qm

n ð1; 1; rÞ are related to Legendre and shifted Jacobi polynomials used by Leonard and Wray
[29]; similar functions were also derived by Verkley [30]. The functions Qm

n ða; b; rÞ are complete and orthog-
onal over [0,1] with respect to the inner product:
Z 1

0

Qm
n ða; b; rÞQm

n0 ða; b; rÞ rb

ð1� r2Þ1�a ¼ Im
n ða; bÞdnn0 ð2:4Þ
The nth order polynomials Qm
n ða; b; rÞ have the following explicit expression:
Qm
n ða; b; rÞ �

Xn�jmj2

p¼0

ð�1Þpþ
n�jmj

2 C nþjmjþc�1
2

þ p
� �

C 2jmjþbþ1
2

� �
Cðp þ 1ÞC n�jmj

2
� p þ 1

� �
C 2jmjþbþ1

2
þ p

� �
C 2jmjþc�1

2

� � rjmjþ2p ð2:5Þ
but they, as well as the normalizing coefficients Im
n ða; bÞ, can be calculated in O(n � jmj) operations using

recursion relations given by Matsushima and Marcus [22]. Recursion relations also exist for the operators
fror; r2; ðrorÞ2 � m2; ðrorÞ2 þ kr2g ð2:6Þ

expressed in the Qm

n polynomial basis, meaning that for any of the operators H in (2.6), there exist banded
matrices L and R such that H = R�1L. Thus,
Hf ¼ g() Lf ¼ Rg ð2:7Þ

reducing the time for multiplication by H or H�1 from quadratic to linear in the number of radial modes or
gridpoints. The existence of recursion relations is a general property of differential operators represented in
polynomial bases, for reasons explained by Tuckerman [31]. Recursion relations will be further discussed in
Section 2.4.

The radial function f m(r) associated with Fourier mode m and its coefficients f m
n in the polynomial basis are

related by the transform pair:
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f mðrÞ ¼
X1
n¼jmj

nþm even

f m
n Qm

n ðrÞ �
XbN
n¼jmj

nþm even

f m
n Qm

n ðrÞ ð2:8aÞ

f m
n ¼

Z 1

0

drwðrÞf mðrÞQm
n ðrÞ=Im

n �
XN�1

i¼0

wif mðriÞQm
n ðriÞ=Im

n ð2:8bÞ
In (2.8), the order of the polynomial expression is bN � 2N � 2 or bN � 2N � 1 according to whether m is even
or odd. The collocation points {ri} for Gaussian quadrature are computed numerically as the roots of the first
neglected m = 0 polynomial Q0bNþ2

if the boundary points are to be excluded; otherwise, they are the roots of a

slightly more complicated expression [22]. Once the {ri} are determined, the weights {wi} are computed by
recursion relations [22].

Eq. (2.8) specify Nm ” N � [m/2] coefficients from values at N quadrature points via a rectangular matrix.
Since the basis is orthonormal, the inverse transformation is obtained from the transpose of this rectangular
matrix. The smaller size of the spectral representation compared to the grid representation is a consequence of
the fact that the functions in (2.8) are not arbitrary functions of r, but belong to the restricted subspace of
functions obeying the regularity conditions (2.2).

2.2. Regularization of the corners

The boundary conditions on uh stated in (1.2) are
uhðr; hÞ ¼ rx� at z ¼ � h
2

ð2:9aÞ

uhðh; zÞ ¼ 0 at r ¼ 1 ð2:9bÞ
The equations have been non-dimensionalized using the radius as the unit of length and the inverse angular
velocity 1/x� (with x� > 0 and jx+j 6 x�) as the unit of time. Therefore, x� = 1 and �1 6 s = x+ 6 1, in
particular x+ is 0, +1 or �1, for the rotor–stator, exactly corotating, or exactly counter-rotating configura-
tions, respectively. (It is also possible to set the velocity on the cylinder to some other constant value instead
of 0; for example to simulate the flow in a rotating cylinder, we would set uhjr=1(h, z) = x+ = x� = 1.) Here,
we focus instead on the difficulties in implementing the discontinuous boundary conditions (2.9).)

Boundary conditions (2.9) are discontinuous at the corner points r = 1, z = �h/2 and possibly r = 1,
z = +h/2: one or both disks rotate while the lateral boundary remains fixed. Mathematically, a PDE with a
finite number of singular points can have a solution which is smooth except at these points. However, spectral
methods then do not converge exponentially because series of smooth functions cannot converge uniformly to
a discontinuous solution. If nothing is done to prevent it, the Gibbs phenomenon will lead to spurious oscil-
lations which propagate into the whole domain from the neighborhood of the singularity. For finite difference
methods, the discontinuity will affect only the neighborhood of the singular point, on the order of the grid
interval, and therefore does not pose a severe problem. Finite volume methods have a local integral formula-
tion and so the discontinuity presents an even less serious problem. The filtering intrinsic to local methods is,
however, intrinsically related to the high numerical diffusion which in turn makes local methods less precise. In
some cases, even local methods do not sufficiently filter singularities. Georgiou et al. [32] discuss the issue of
spurious oscillations in the context of finite element methods. In the solutocapillary problem studied by Mar-
tin-Witkowski and Walker [33], the authors were required to explicitly filter the solution to achieve acceptable
convergence even in a finite difference calculation.

Spectral methods must always explicitly filter strong singularities like (2.9a) and (2.9b). We have chosen
to do this by approximating the discontinuous function at the boundary by a steep but smooth profile.
This procedure can be justified by arguing that we are not interested in finding the solution to the singular
problem. In any real experiment, the boundary conditions are not discontinuous: a small gap must neces-
sarily exist between the rotating disks and the stationary lateral boundary. In our algorithm, we replace the
constant angular velocities in (2.9a) by continuous functions, as illustrated by Fig. 4a. Two possibilities
are:
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Fig. 4. Regularized profiles used for elimination of the discontinuous boundary conditions at the cylinder corners. (a) regularization on
upper and bottom disks using (2.10). (b) regularization on lateral bounding cylinder using (2.11).
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uhðr; hÞ ¼ r 1� e
r�1
d

� �
x� at z ¼ � h

2
ð2:10aÞ

uhðr; hÞ ¼ rð1� rlÞx� at z ¼ � h
2

ð2:10bÞ
where l is an arbitrary but large even integer (e.g. l = 10), and d, x± are constants. In order to be represented
in a radial polynomial basis, the exponential regularization (2.10a) must be approximated by a polynomial, so
that both expressions above are effectively polynomials. The steepness of the profiles are adjusted by varying d
or l, whose possible values are limited by the radial polynomial order N.

The advantage of exponential regularization is that, for a given N, a steeper profile can be achieved by the
polynomial approximation to (2.10a) than by the polynomial (2.10b), as can be seen in Fig. 5(a). In this way,
the deviation from the idealized profile is minimized, without unduly increasing the radial resolution N over
that required to resolve the field in the interior. The polynomial approximation to (2.10a) differs from 1 by
more than 10% only over the small range 1 � 2d [ r < 1.
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Regularization of the boundary condition imposes a lower bound on the spectral resolution – the spectral
approximation must be able to represent the regularization profiles smoothly. In fact, Lopez and Shen [7]
observed that the actual resolution should be approximately twice the minimal resolution sufficient for repre-
senting the regularization profiles, due to generation of higher wavenumbers by the nonlinear terms. As was
shown by Lopez and Shen [7], for comparing with results obtained using different methods and for benchmark
purposes it is sufficient to use d � 0.005. In practice, we use 0.005 < d < 0.05, illustrated in Fig. 5(b).

Care must be taken in approximating (2.10a) by a polynomial expression, in order to satisfy all of the con-
ditions in (1.5a)–(1.5b) that we require of uh and of w. The procedure we use is as follows. We evaluate (2.10a)
on the collocation points. Since uh is an odd function of r (see (2.29)), we apply the transform (2.8) using the
(odd) polynomials associated with the m = 1 Fourier mode. The basis of odd radial functions insures that this
approximation to uh on the bounding disks is zero at r = 0, while the use of Gauss–Radau collocation points
which include the cylinder boundary insures that it is also zero at r = 1. This approximation to uh is integrated
over r to obtain an approximation to w, with the integration constant chosen in order to satisfy w = 0 at r = 0.

Another choice is to apply a filter to the lateral boundary, replacing (2.9b) by
uhðzÞ ¼ xþe� 1�2z
hð Þ=d þ x�e� 1þ2z

hð Þ=d at r ¼ 1 ð2:11Þ

while keeping the uniform angular velocity profiles (2.9a) on the disks unchanged; see Fig. 4(b). This kind of
regularization is similar to that of Lopez and Shen [7].

Other, quite different, approaches to the treatment of singularities exist. One is singularity subtraction. The
form of the singular part of the solution is determined analytically, and the solution is written as a sum of the
singular solution and an unknown regular part. Only the regular part is treated numerically. The effect of the
singular solution on the numerical one can be filtered down to the scales representable by the spatial resolu-
tion. The main advantage of this method is that it recovers the convergence of the scheme and at the same time
approaches the exact solution. Recent applications of this method are to the driven cavity problem [34] and to
injection of fluid into a cylindrical channel [35]. The results obtained are generally of high precision and often
provide a benchmark for a particular problem. The main drawback is that it requires knowledge of the solu-
tion near the singular point. For the 2D driven cavity problem, the nature of the singularity was given by Dean
and Montagnon [36] and Moffatt [37] for a Stokes flow. For most inertial (Navier–Stokes) flows, and for 3D
flows, as shown by Hills and Moffatt [38], the analytic form of the singular solution is unknown. Note that
even when the velocity boundary conditions are continuous, lower-order singularities of purely geometric ori-
gin are present at the corners. We will return to this in Section 3.2.

Another approach is to derive a physically justified model which is no longer singular. Methods from
molecular dynamics reflect the microscopic nature of the fluid at the smallest scales but are very hard to adapt
to problems containing both large and small scales. Several continuous (macroscopic) approaches have been
proposed as a compromise between a continuous and a molecular description. These all introduce a spatially
limited physical effect which effectively removes the singularity. In this category are methods based on variable
slippage, as well as the surface viscosity or dynamic surface tension applicable to free-surface problems. A
comprehensive review of physically justified models, as well as other regularization techniques, is provided
by Nguyen and co-workers [39,40].

2.3. Time integration

We use an implicit scheme for the linear diffusive terms while treating the nonlinear terms explicitly. Spec-
tral methods require that the coefficients representing the solution decay with their index or wavenumber. The
nonlinear term in the Navier–Stokes equation can be seen as a generator and amplifier of high wavenumbers
while the viscous term damps these high wavenumbers. The intensity of this damping depends on the partic-
ular time-integration scheme and on the way the Laplacian is evaluated and must be strong enough to oppose
the effect of the nonlinear term. In our case, high-wavenumber modes are needed to represent both the thin
boundary layers created near the rotating disks and the steep regularized boundary profile. Fortunately, these
effects are most pronounced in the proximity of the boundaries, where the axial Chebyshev and radial poly-
nomial grid is finest. However, in the counter-rotating case, the central shear layer can also require high wave-
number modes in order to be well-represented.
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We use the first-order backward Euler scheme for linear terms because it attenuates high wavenumbers fas-
ter than all other methods. Tests performed with the Crank–Nicolson method confirmed that for this scheme,
nonlinear simulation was unstable even for quite small Reynolds numbers Re � 300. This behavior was also
observed for the von Kármán flow by Lopez et al. [14] and Speetjens [41] and by Marcus [42] for Taylor–Cou-
ette flow.

When the nonlinear term is treated by the second-order explicit Adams–Bashforth scheme, the backward
Euler/Adams–Bashforth time-integration scheme for the potentials w and / takes the following form:
Table
Typica

Re

<O(50
500–10
1000–3
3000–5
5000–1

<O(50
500–10
1000–3
3000–5

Typica
ðI � dtRe�1DÞDhw
nþ1 ¼ Dhw

n þ Dt
2

3Sn
w � Sn�1

w

� �
� rhsn

w ð2:12aÞ

ðI � dtRe�1DÞDDh/
nþ1 ¼ DDh/

n þ Dt
2

3Sn
/ � Sn�1

/

� �
� rhsn

/ ð2:12bÞ
where Sw and Sw are defined in (1.4). Our algorithm could easily be adapted to integrate the diffusive terms via
the backwards differentiation scheme, which achieves second-order accuracy while damping high wavenum-
bers, merely by changing the coefficients in (2.12) and including terms in wn�1 and /n�1.

Eq. (2.12) can be written as the nested system of equations:
I � dtRe�1D
� �

fw ¼ rhsw ð2:13aÞ
Dhw ¼ fw ð2:13bÞ
I � dtRe�1D
� �

g ¼ rhs/ ð2:13cÞ
Df/ ¼ g ð2:13dÞ
Dh/ ¼ f/ ð2:13eÞ
As explained in Section 1, the boundary conditions imposed on (2.13) are Dirichlet conditions with boundary
values calculated via the influence matrix in such a way as to satisfy the more complicated coupled boundary
conditions given in (1.5).

The maximal time step dt depends on the Reynolds number. Typically starting from state u = 0 requires a
dt which is 4–10 times smaller than that which can be used for evolving a fully developed state at the same
Reynolds number. This is because the state u = 0 is incompatible with the boundary condition (2.9a). In
the first few iterations a boundary layer is created near the rotating cylinder lids, requiring higher spatial res-
olution. This can be avoided by performing about 100 initial steps of the linear Stokes solver, i.e. with
Sw = S/ = 0.

In Table 1 we present the values of dt and spatial resolutions typically used for performing nonlinear sim-
ulations at different values of Re.

2.4. Viscous terms

We now describe the way in which the Helmholtz and Poisson problems with Dirichlet boundary condi-
tions in (1.6) or (2.13) are solved. The azimuthal Fourier representation in (2.1) decomposes each 3D elliptic
1
l values of timestep dt and azimuthal (M), axial (K) and radial (N) resolution, for different configurations

Configuration dt Resolution (M · K · N)

0) 2D 0.05–0.1 1 · 32 · 16
00 2D 0.02–0.05 1 · 64 · 32
000 2D 0.01–0.02 1 · 96 · 48
000 2D 0.005–0.01 1 · 128 · 64
0,000 2D 0.001–0.0025 1 · 180 · 90

0) 3D 0.04–0.1 8 · 64 · 32
00 3D 0.01–0.04 16 · 80 · 40
000 3D 0.025–0.01 32 · 100 · 60
000 3D 0.001–0.0025 (64–96) · 128 · 80

l steepness of the regularization profile is d � 0.01.
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problem into a set of 2D problems, each of which is associated to a single azimuthal Fourier mode m. The
reflection symmetry in z leads to further decoupling between the set of modes that are symmetric or antisym-
metric in z. Each of the 2M resulting elliptic problems corresponds to a single azimuthal Fourier mode m and
axial parity p 2 {s,a}, within which each equation corresponds to a value of (k,n), the indices of the axial and
radial basis functions. The number of axial modes of each parity is K/2, and the number of radial basis func-
tions corresponding to Fourier mode m is N m � N � ½m

2
�; in the remainder of this section, we will take m = 0, so

that Nm = N.
In the full cylinder, regularity at the axis serves as one of the boundary conditions and is imposed by the use

of the Qn radial basis in (2.1), leaving only the boundary condition at r = 1 to be imposed. In the axial direc-
tion, the boundary conditions at the two disks can be recombined to yield one condition for each parity. Thus,
one radial and one axial boundary condition remains to be imposed on each 2D problem. These are imposed
via the s method [23,24], so that the equations corresponding to the highest-wavenumber modes in each direc-
tion are replaced by the boundary conditions.

Gaussian elimination is especially economical for systems resulting from the spectral discretization of dif-
ferential equations, whose structure is barely altered when boundary conditions are imposed via the s method,
since recursion relations reduce the solution time from quadratic to linear in the number of modes if the result-
ing systems are diagonally dominant. This can only be done in one direction however. In geometries with more
than one non-periodic direction, the remaining directions must be treated by diagonalization. Here, we treat
the axial direction by incorporating the boundary condition via Schur decomposition into the matrices repre-
senting o

2
z for each parity and diagonalizing [24,43], leading to decoupled problems for each axial eigenvalue

kz. The operation count at each timestep, dominated by multiplication by the eigenvector matrix, is quadratic
in K/2 and linear in N.

Thus, the 2D and 3D problems in (2.13) are all decomposed into a set of one-dimensional radial problems:
Hf � 1

r
orror �

m2

r2
þ k

� 	
f ¼ g ð2:14Þ
which we will write in practice as
r2Hf � rorror � m2 þ kr2

 �

f ¼ r2g ð2:15Þ

where m is the Fourier mode. The scalar k is 0 or kz for the Poisson problems (2.13b), (2.13d) or (2.13e), or
kz + Re/dt for the Helmholtz problems (2.13a) and (2.13c) (with the multiplicative factor �Re/dt incorporated
into g).

With f and g represented in the polynomial radial basis (2.8), a recursion relation exists for r2H, as stated in
Section 2.1, i.e. r2H = R�1L with R, L banded matrices. Thus each Helmholtz problem (2.15) can be replaced by
Lf ¼ Rr2g � Qg ð2:16Þ

For non-zero k, L is pentadiagonal and R is tridiagonal. Two obstacles must still be surmounted before (2.16)
can be solved in a time which is linear in the number of radial modes. A method which overcomes them was
presented by Matsushima and Marcus [22]. Here, we will recast this method in terms of the Sherman–Mor-
rison–Woodbury formula, which can be shown [21] to underly a large class of transformations between cou-
pled and uncoupled systems.

The first obstacle is that L is not diagonally dominant, so that stable Gaussian elimination would require
pivoting, destroying the banded structure. Since the largest element of L is located on the first super-diagonal,
permuting its rows leads to a matrix PL which is diagonally dominant, but is no longer banded.

Second, the radial boundary condition must be imposed. The tau method replaces (2.15) by
Hf ¼ g þ êNs ð2:17aÞ
BTf ¼ b ð2:17bÞ
which effectively discards gN by adjusting it with the extra unknown s, introduced along with the boundary
condition (2.17b). BT is the row vector which represents the discretized boundary condition and êN is the unit
vector which selects the Nth component. Multiplying (2.17a) by r2, substituting the banded matrix decompo-
sition (2.16) and permuting rows leads to:
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r2Hf ¼ R�1Lf ¼ r2g þ r2êNs

Lf ¼ Rr2g þ Rr2êNs

PLf ¼ PQg þ PQêNs

ð2:18Þ
Eqs. (2.18) and (2.17b) are rewritten in matrix form as
ð2:19Þ
where the subscript lo refers to all indices lower than N. System (2.19) is solved by using the Sherman–Mor-
rison–Woodbury formula
ðAþ vwTÞ�1 ¼ A�1 � A�1vðI þ wTA�1vÞ�1wTA�1 ð2:20Þ

which relates the inverses of two matrices differing by a low-rank transformation vwT, in particular differing by
a few rows or columns. We define A, v and wT for (2.19) as follows. The coupled matrix in (2.19), which cor-
responds to (A + vwT), is replaced by another matrix A, which is more easily inverted since it is block upper
triangular:
ð2:21Þ
where a is an arbitrary value whose order of magnitude is that of the dominant values of L and êT
1 is a unit row

vector corresponding to the lowest radial wavenumber present for this m. The crucial property of the matrix L
0

defined in (2.21) is that it is both banded and diagonally dominant and so can be stably inverted without any
pivoting. The matrices in (2.21) and (2.19) differ only in their first and last rows, so their difference vwT is of
rank two:
ð2:22Þ
In addition to the ability to solve (2.21), the Sherman–Morrison–Woodbury formula (2.20) requires only the
inversion of the following 2 · 2 matrix:
ð2:23Þ
where we have used the fact that aêT
1 ðL0Þ

�1ê1 ¼ 1=a. The notation ðL0Þ�1 is used to designate solving a linear
system involving L 0 via backsolving rather than explicitly calculating the inverse matrix.
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2.5. Nonlinear terms

To compute the nonlinear terms
Sw � êz � r � S ð2:24aÞ
S/ � �êz � r � r� S ð2:24bÞ
where
S � ðu � $Þu ¼ 1

2
rðu � uÞ � u� x ð2:25Þ
we use the pseudo-spectral method [23], in which fields are transformed into physical space, the nonlinear
terms are carried out via pointwise multiplication, and the results transformed back into spectral space. Com-
puting the nonlinear term S in the rotational form �u · x requires only 9 spectral M physical transforms as
compared to the 15 transforms required by the convective form (u Æ $)u. The difference between them is anni-
hilated by the curls taken in (2.24), so we will write S = �u · x.

The calculation of the nonlinear terms presents two difficulties. The first involves radial parity and appears
when creating S. We have sought to use only scalar fields which can be represented by expansions of type (2.1).
Such fields can be constructed using radial operators such as (2.6) which preserve radial parity and can be
implemented via recursion relations. The components of velocity and vorticity, defined in cylindrical coordi-
nates using the toroidal and poroidal potentials as
u ¼ 1

r
ohwþ orz/

� �
êr þ

1

r
ohz/� orw

� �
êh þ Dh/ð Þêz ð2:26aÞ

x ¼ orzw�
1

r
ohD/

� �
êr þ

1

r
ohzw� orD/

� �
êh þ

1

r
�Dhwð Þêz ð2:26bÞ
do not have this property. We therefore construct modified fields:
u	 � rurêr þ ruhêh þ uzêz ¼ ðohwþ rorz/Þêr þ ðohz/� rorwÞêh þ ðDh/Þêz ð2:27aÞ
x	 � rxrêr þ rxhêh þ xzêz ¼ ðohuz � ozu	hÞêr þ ðozu	r � roruzÞêh þ ð�DhwÞêz ð2:27bÞ
whose components have the same parity as w and /, as desired. The modified fields u* and x* are transformed
into physical space, where their cross product is taken to form
S	 � rSrêr þ rShêh þ Szêz � S	r êr þ S	hêh þ S	z êz ¼ �u	 � x	 ð2:28Þ

The second difficulty appears when differentiating S in (2.24) and involves regularity. A vector function which
is analytic at the origin must obey conditions analogous to (2.2), namely
frðrÞ ¼ rjm�1jprðr2Þ; f hðrÞ ¼ rjm�1jphðr2Þ; f zðrÞ ¼ rmpzðr2Þ ð2:29Þ
where pr, ph and pz are polynomials. We require not only regularity at the origin of S, but also regularity of its
curl and double curl. When S = �u · x is calculated analytically, this is in fact the case. However, the numer-
ical transforms to and from physical space introduce aliasing errors which destroy this property. Full deali-
asing would multiply the time necessary for evaluating of the nonlinear term by a factor of about 4.5.
Matsushima and Marcus [22] suggest instead that all terms that could potentially suffer in spectral space from
singular operations (like dividing by r) be evaluated in physical space (at collocation points excluding the coor-
dinate origin) and transformed back to the spectral space using the radial transform, ensuring the correct poly-
nomial order for a given Fourier mode. We have generalized this approach to the evaluation of Sw and S/. For
each Fourier mode m, we write
Sw ¼
1

r
orrSh � imSrð Þ ¼ 1

r2
ðror � mÞS	h �

im
r2
ðS	r þ iS	hÞ ð2:30aÞ

S/ ¼ �
1

r
oz orrSr þ imShð Þ þ DhSz ¼ �

1

r2
ozðror � mÞS	r þ DhSz �

m
r2

ozðS	r þ iS	hÞ ð2:30bÞ



Table 2
CPU timings on an IBM Power4, as a function of azimuthal resolution M and number of processors

Number of processors Resolution M · K · N CPU (s)/timestep CPU (s)/(timestep · M)

2D Single processor 1 · 96 · 48 0.035 0.035
3D Single processor 32 · 96 · 48 1.7 s 0.053
3D 32 processors 32 · 96 · 48 1.5 s 0.047
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The purpose of the decomposition in (2.30) can be explained as follows. Consider the first terms on the right-
most-sides of (2.30), those which do not contain ðS	r þ iS	hÞ. Because they do not generate terms of lower poly-
nomial order, these terms preserve regularity and can be carried out in spectral space. In contrast, although
ðS	r þ iS	hÞ should be divisible by r2, aliasing error in the multiplication (2.27) can generate terms of lower poly-
nomial order. (More specifically, S	r and iS	h are not individually divisible by r2 and aliasing perturbs the can-
cellation in the sum S	r þ iS	h.) This division by r2 is therefore carried out in physical space. This increases the
number of spectral M physical transformations only from 9 to 10. Further details can be found in [44].

2.6. Parallelization

The separability of almost the entire algorithm (except for the nonlinear term) between the Fourier
modes makes parallelization of the code quite straightforward. Our code was parallelized using the
MPI protocol which made it possible to run even very time-consuming three-dimensional simulations with
resolutions such as M · K · N = 128 · 160 · 90. Spectral methods are often considered to be poorly suited
for parallelization as they require the exchange of all the data at each timestep of the simulation. In our
code, all the necessary data exchange is done within two calls to the MPI_Alltoall MPI subroutine treat-
ing, in total, 10 three-dimensional fields at each time step. Even though this may seem to be a large oper-
ation, on the IBM Power4 architecture with 64 processors we found that the time overhead per timestep
due to the data exchange is counterbalanced by more efficient usage of the processor cache memory: each
processor of the parallelized code treats smaller data portions which can more easily fit into the proces-
sor’s fast internal memory (cache). We observed that the total CPU time used by the parallel code is often
smaller than that used by the serial code treating the same problem, as shown in Table 2. The efficiency of
the parallel code depends, however, on the speed and the latency of the inter-processor network: the IBM
Power4 architecture has particularly fast connection between the nodes which use the mixed model fast

network/shared memory communication between processors. We conclude that for modern massively par-
allel computers, parallelization of a pseudo-spectral code does not necessarily degrade its efficiency but can
actually enhance it. Additional technical information about the MPI parallelization of the code is given in
[44].

3. Tests and validation

We now describe the ways in which we have validated the hydrodynamic code described here and in our
companion paper [20]. We have obtained exact polynomial solutions to the nested Helmholtz–Poisson solver,
which is by far the most complicated portion of the code; we present its form in the hopes it may prove useful
to other researchers. For non-polynomial solutions, we have analyzed the effect of the corner singularity on
the error and verified the spectral convergence. We have tested the full nonlinear time-dependent program
by simulating 2D and 3D stationary and time-periodic rotor–stator flows which are well documented in the
literature.

3.1. Polynomial solutions

No analytic solutions are available for the time-dependent nonlinear differential equations (1.4) and bound-
ary conditions (1.5) with which to compare a numerical solution. We can, however, formulate polynomial
solutions to the time-discretized equations
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EDhw � ðI � dtRe�1DÞDhw ¼ rhsw ð3:1aÞ
EDDh/ � ðI � dtRe�1DÞDDh/ ¼ rhs/ ð3:1bÞ
relating the four fields w, /, rhsw, rhs/. The fields w and / are chosen to be regular polynomials obeying
boundary conditions (1.5). The fields rhsw and rhs/ are then calculated analytically by acting with the differ-
ential operators E, D and Dh on w, / as specified in (3.1). We also require that rhsw and rhs/ be expressible as
the êz component of the curl and double curl of a vector field S as specified in (2.24). S must in turn be express-
ible as the vector product �u · x of two regular vector fields, as specified in (2.25). However, u and x are not
required to be derived from the potentials w and /, and so this construction does not lead to a solution to the
Navier–Stokes equations. These requirements on rhsw and rhs/ restrict the possible forms of the polynomials
w and /.

When w and / are constructed in this way, no error is introduced in imposing the boundary conditions via
the s method (see Section 2.4). Comparison between this analytic solution and a numerical solution provides a
test of the linear Helmholtz/Poisson solver, including the enforcement of the boundary conditions via the
influence matrix method.

Using a symbolic algorithm implemented in Maple, we have calculated polynomial solutions which contain
several radial and axial basis functions (wavenumbers) and which correspond to a realistic profile x±, such as
xpoly
� ¼ �ð1� r6Þ. Polynomial solutions were calculated for Fourier modes ranging from m = 0 to m = 5. For

m = 0, we sought a solution containing two recirculation rolls separated by the mid-plane z = 0, leading to the
potentials, right-hand-sides and velocities:
wpolyðr; zÞ ¼ 1

64
zð�30z2 þ 33z4 þ 5Þr8 � 5

48
zðz� 1Þðzþ 1Þð5z2 � 1Þr6 � 1

2
z5r2 ð3:2aÞ

rhspoly
w ðr; zÞ ¼ �zð�690z2 þ 33z4 þ 185Þr6 þ 3

4
zð�1970z2 þ 425þ 1609z4Þr4

� 60zðz� 1Þðzþ 1Þð5z2 � 1Þr2 � 40z3 þ 2z5 ð3:2bÞ

/polyðr; zÞ ¼ � 1

2
ðr � 1Þ3ðr þ 1Þ3ðz� 1Þ2ðzþ 1Þ2z ð3:2cÞ

rhspoly
/ ðr; zÞ ¼ �72zð5z2 � 33Þr4 � 96zð3z4 þ 108� 131z2Þr2 þ 1248z5 þ 4344z� 6456z3 ð3:2dÞ

upoly
r ¼ �3rðz� 1Þðzþ 1Þð5z2 � 1Þðr � 1Þ2ðr þ 1Þ2 ð3:2eÞ

upoly
h ðr; zÞ ¼ �

1

8
zrðr � 1Þðr þ 1Þð�30r4z2 þ 5r4 þ 33r4z4 þ 8r2z4 þ 8z4Þ ð3:2fÞ

upoly
z ¼ 6zðz� 1Þ2ðzþ 1Þ2ðr � 1Þðr þ 1Þð3r2 � 1Þ ð3:2gÞ
For m = 1, we calculated the polynomial solution:
wpolyðr; zÞ ¼ 18

7
rzð22þ r4 � 9r2Þðz4 � 1Þ cosðhÞ ð3:3aÞ

rhspoly
w ðr; zÞ ¼ �

1728

7
rzð77� 5z2r2 � 25r2 þ 15z2 � 77z4 þ 25r2z4Þ cosðhÞ ð3:3bÞ

/polyðr; zÞ ¼ rðz� 1Þ2ðzþ 1Þ2ð14� 10r2 þ 7z2 þ 2r4 � 5z2r2 þ r4z2Þðr2 � 1Þ sinðhÞ ð3:3cÞ
rhspoly

/ ðr; zÞ ¼ �1152rð�278þ 310z4 þ 287r2 þ 294z2 � 25r4 � 108z6 þ 100r2z6

� 255z2r2 þ 125r4z4 � 435r2z4 � 15r4z2Þ sinðhÞ ð3:3dÞ
After numerically discretizing the polynomial forms obtained for rhsw and rhs/, we used our Helmholtz/
Poisson solver to obtain numerical solutions for w and /. The relative errors
�w ¼
jw� wpolyj
sup jwpolyj

; �/ ¼
j/� /polyj
sup j/polyj

ð3:4Þ
are shown in the (r, z) plane as the lower surfaces of Figs. 6–8 for the m = 0 and m = 1 solutions given above,
and also for an m = 2 polynomial solution. These are of order O(10�14), i.e. machine precision, and never ex-
ceed O(10�12).



Fig. 6. Errors in w (left) and / (right). Upper surfaces show the a posteriori error �eq
w , �eq

/ in satisfying the equations and defined in (3.5) for
m = 0 after 100 timesteps of nested Stokes solver. Lower surfaces show the a priori relative error �w, �/ defined in (3.4) of the polynomial
solution (3.2). Resolution used: K = 64, N = 32.

Fig. 7. Same as Fig. 6, for m = 1.

Fig. 8. Same as Fig. 6, for m = 2.
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3.2. Non-polynomial solutions: error analysis

If the right-hand-sides rhsw and rhs/ are not polynomials that can be exactly represented within the spatial
discretization, then the equations cannot be exactly satisfied. Note that the tau error introduced in favor of
satisfying the boundary conditions at each level of the nested system of equations is necessarily propagated
to the next level. That is, wn+1 is not an exact solution to the Poisson problem (2.13b) and in addition, the
right-hand-side fw is not an exact solution to the Helmholtz problem (2.13a). This implies that the error is
not isolated in the equations corresponding to the highest wavenumbers, but is distributed among all the equa-
tions. However, we will see below that non-satisfaction of the equations for lower wavenumbers does not have
severe consequences. In this subsection, as in the previous one, we restrict ourselves to the Stokes problem
(3.1) whose errors behave like those of the Navier–Stokes equations.

Since no exact solution is available for comparison, we measure the a posteriori error in satisfying Eq. (3.1),
defined as
�eq
w ¼

jEDhw� rhswj
sup jrhswj

; �eq
/ ¼

jEDDh/� rhs/j
sup jrhs/j

ð3:5Þ
and shown as the upper surfaces of Figs. 6–8 in the physical (r,z) plane for the m = 0, m = 1 and m = 2 modes.
As is usually the case, the error is concentrated in the neighborhood of the boundaries, decaying rapidly away
from them.

The errors (3.5) represent quite severe criteria, since these measure the satisfaction of the curl and double
curl of the original equations; the error in satisfying the Stokes equations themselves is considerably lower, on
the order of �eq

w divided by O(K,N) and �eq
/ divided by O(K2,N2) near the boundary. This estimate relies on the

fact that the spectrum of the error in satisfying the Stokes equations is approximately uniform, so that its
derivatives are dominated by its high wavenumber terms.

The error depends significantly on the right-hand-sides rhsw and rhs/. For arbitrary right-hand-sides, the
boundary conditions can be very constraining and can lead to a nearly singular solution suffering from spu-
rious oscillations, with an error near the boundary that is O(1). However, �eq

w , �eq
/ are considerably smaller

when the right-hand-sides are calculated from the solution at the previous timestep, especially for the Stokes
problem for which the nonlinear term is zero.

For the axisymmetric modes shown in Fig. 6, �eq
w is O(10�6) on the boundaries and O(10�10) for the internal

points. This is much less than �eq
/ , which reaches O(1) at the cylinder corners. To understand this, we recall that

in the axisymmetric case, the toroidal flow described by w is azimuthal and the poloidal flow described by / is
in the (r,z) plane. The azimuthal flow described by w follows smooth paths, while the flow described by / must
abruptly change direction near the corners. This poloidal flow in fact resembles the analytic asymptotic solu-
tion derived by Moffatt [37] for 2D flow in a rectangular container, which is weakly singular in that its vorticity
behaves like q1.74 (for a small distance q from the corner). This in turn implies that the axial component of the
Laplacian of the Stokes equation measured by �/ diverges for exact solutions to the continuous 2D Stokes
problem, in contrast with the numerically computed solution which is forced to be finite and regular. Satisfac-
tion of the Stokes equation itself follows from the satisfaction of the boundary condition which our code
imposes to precision O(10�14).

For the non-axisymmetric modes shown in Figs. 7 and 8, typical errors at the corners are O(0.01) for w and
O(0.1) for / and the same corner singularity is observed for both. This is because the 3D Stokes solutions are
also weakly singular at the corners [38] and w and / are coupled for m 6¼ 0. The relative error decreases rapidly
away from the boundaries: it is O(10�4) only two gridpoints away and attains O(10�6) for the interior points.

The accuracy could be further enhanced – or confined to certain modes – by completing the method with
the s-correction [8,21,45], which takes into account the high-wavenumber residuals resulting from the impo-
sition of the boundary conditions for each Helmholtz or Poisson problem.

3.3. Spectral convergence

The important indicator of spatial convergence for spectral methods is the decay rate of high-wavenumber
coefficients in the solution fields. For a well-behaved solver, in the absence of volume and boundary singular-
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ities, the magnitude of spectral coefficients should decay rapidly with wavenumber. For a laminar flow this
decay rate should be exponential, but the presence of thin boundary layers can significantly influence the con-
vergence. Figs. 9 and 10 show the spectral convergence for a full nonlinear Navier–Stokes simulation at
Re = 750 at T = 100dt = 1 from initial conditions of uh = x+(r) 2z/h, uz = ur = 0. We show the (r,z) spectral
coefficients for Fourier modes m = 0 and m = 1; those for higher m are similar. The convergence of the spectra
can be qualified as quasi-exponential, meaning that the high-wavenumber spectral coefficients seem not to
decrease below a level O(10�12). This can almost certainly be attributed to the singular character of the solu-
tion to the Stokes equation near the cylinder corners. In support of this explanation, we note that the spectrum
obtained after 100 timesteps of the linear (Stokes) solver behaves similarly, except for wm=0, which displays
true exponential decay, down to levels of 10�22 for the same resolution.

3.4. Axisymmetric rotor–stator configuration

The code was first tested on the well-documented axisymmetric rotor–stator configuration with aspect ratio
h = 2. The first test is the reproduction of the characteristic steady state for Re � 1850 where the flow exhibits
two recirculation bubbles (one large and the other much smaller) situated approximately at (r = 0, z = 1/2)
and (r = 0, z = 0). The contour plot of the Stokes streamfunctions defined as
Fig. 9. Spectral coefficients for m = 0, after 100 timesteps of the nonlinear Navier–Stokes solver (Re = 750, dt = 0.01). Resolution used:
K = 64, N = 32.

Fig. 10. Same as Fig. 9 for m = 1.



Fig. 113 Contours of Stokes
rðr; zÞ ¼ �rorwðr; zÞ; gðr; zÞ ¼ �ror/ðr; zÞ ð3:6Þ

presented in Fig. 12 matches that presented by Daube [6] (Fig. 11) and is similar to those of Lopez and Shen [7]
obtained for the slightly larger aspect ratio h = 2.5. Quantitative agreement between our results and the pre-
vious calculations by Daube [6] and Lugt and Abbound [3] is established by comparing the profiles of axial
velocity uz on the cylinder axis (see Fig. 14). This test shows excellent agreement between our results obtained
using the poloidal–toroidal formulation (Fig. 14(b)) and the velocity–vorticity formulation (Fig. 14(a)).

It was observed experimentally by Escudier [46] and numerically by Daube and Sorensen [4], Lopez [5],
Daube [6], Gelfgat et al. [10] and Speetjens and Clercx [8] that this flow undergoes a Hopf bifurcation toward
a flow oscillating at approximately 0.25 times the rotation frequency. Our computations produce this transi-
tion at Re near 2600 with a period of T = 26.55, within the ranges previously found for this configuration (see
Table 3); deviations can probably be attributed to the differences in the regularization of the boundary con-
poloidal streamfunctiongfrom[6]forRe= 1850,h= 2.
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Table 3
Oscillation period in rotor–stator configuration with h = 2 and Re = 2800

Method Reference T

u � x Daube [6] 25.52
g � x Daube [6] 25.84
u � x Speetjens and Clercx [8] 26.61
u � p Gelfgat et al. [10] �26.7
w � / This work 26.55
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ditions. The simulation was performed with dt = 0.01 and with high spatial resolution K · N = 140 · 70 in
order to well represent the sharp regularization profile corresponding to d = 0.06 imposed on the lateral
boundary r = 1 (see Section 2.2) as proposed by Lopez and Shen [7] and also used by Speetjens [41]. The time
evolution uh(r = 0.5, z = 0, t), along with the normalized power spectrum, are shown on Figs. 15–17.



Fig. 158 Saturated
3.5. First 3D instability

We have tested the non-axisymmetric aspects of the code using another rotor–stator configuration. For the
aspect ratio of h = 3.5 we found that the first bifurcating mode has wavenumber m = 3 and critical Reynolds
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number Rec = 2116. This result is in good agreement with Gelfgat et al. [10], where the critical Reynolds num-
ber was estimated at Re = 2131. A characteristic spiral analogous to that visualized by Lopez et al. [14] for the
same configuration is represented on Fig. 13.

4. Conclusion

Motivated by a need for a numerical tool adequate for investigating cylindrical von Kármán flow, we have
written a spectral code which solves the Navier–Stokes equation for an incompressible fluid in a finite cylinder.
This task encompasses a number of algorithmic challenges, which we list in order of decreasing difficulty. The
first is to impose incompressibility, a goal which we achieved by using the poloidal–toroidal decomposition. In
a finite cylinder, this formulation leads to differential equations of higher order and coupled boundary condi-
tions [18,19]. In a companion paper [20], we described the way in which we used the influence matrix technique
to transform these equations and boundary conditions into an equivalent set of decoupled Helmholtz or Pois-
son problems, each with Dirichlet boundary conditions.

The second challenge, which has been the main focus of this article, is the treatment of the cylindrical axis.
The singularity engendered by the use of cylindrical coordinates is only apparent and should not be transmit-
ted to the fields. We have dealt with the axis singularity by using a basis of radial polynomials developed by
Matsushima and Marcus [22] which are analytic at the axis and which have properties similar to those of the
Legendre polynomials. We have extended [22] in several ways. (i) The radial basis was developed for two
dimensions, i.e. polar coordinates. Here, we have used it to represent fields in a three-dimensional cylinder
of finite (non-periodic) axial length. This fairly straightforward extension was implemented by diagonalizing
the differential operators in the axial direction. (ii) Numerical inaccuracy in the pseudo-spectral evaluation of
the nonlinear term can generate terms which are not analytic. We have generalized to the high-order equations
resulting from the poloidal–toroidal decomposition the procedure developed by Matsushima and Marcus [22]
to avoid this problem. Care must be taken to preserve order and parity at each stage of the calculation. (iii)
Differential operators expressed in this basis can, as in most such cases [31], be reformulated as recursion rela-
tions, which can be used to reduce the time for action or inversion of differential operators. Using the Sher-
man–Morrison–Woodbury formula, we have formalized the stable algorithm given in [22] for solving Poisson
and Helmholtz problems in a time proportional to the number or radial gridpoints or modes.

The third challenge posed by a finite cylinder is the genuine singularity at the corners of the domain, where
the disks and the cylinder which bound the domain meet. Finite difference and finite element codes intrinsically
smooth the singularity; in contrast, spectral expansions attempt to converge to the discontinuity, leading to
spurious oscillations. In our code, we replaced the discontinuous boundary conditions by a profile on the disks
which is steep but continuous as the corner is approached. The geometrical singularity remains, but it is weak
and does not prevent spectral convergence.

Tests performed for analytic polynomial solutions to the Helmholtz problem with an appropriate right-hand
side showed that the solver reproduces exact solutions to nearly machine precision. For a non-polynomial solu-
tion, the solver displays exponential convergence of spectral coefficients of the solution. The potential equations
(corresponding to the curl and double curl of the Navier–Stokes equations) are satisfied, with an error of only
O(10�10) for the interior points. The numerical code was parallelized using the MPI protocol. This made it pos-
sible to simulate nearly turbulent flow for Re = 5000 with a spatial resolution of 128 · 160 · 90.

Finally, we have validated the hydrodynamic code by testing it against well-documented problems in the
literature, demonstrating the feasibility of calculating solutions to the time-dependent Navier–Stokes equa-
tions in a finite cylindrical geometry which are both analytic and divergence-free.
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